時速20km以下のライフスタイルを創る

<table>
<thead>
<tr>
<th>著者名</th>
<th>河岡 徳彦・迫 秀樹</th>
</tr>
</thead>
<tbody>
<tr>
<td>雑誌名</td>
<td>静岡文化芸術大学研究紀要</td>
</tr>
<tr>
<td>巻</td>
<td></td>
</tr>
<tr>
<td>ページ</td>
<td></td>
</tr>
<tr>
<td>発行年</td>
<td></td>
</tr>
<tr>
<td>年</td>
<td>2008-03-31</td>
</tr>
</tbody>
</table>
Creating Lifestyle within the Speed of 6km/h -3-

Norihiko KAWAOKA
Department of Industrial Design, Faculty of Design

Hideki SAKO
Department of Industrial Design, Faculty of Design

1. はじめに（研究の流れ）

今回のモデルは走行確認やトレーニング效果を検証するために、出来るだけ既存のモデルやパーツを使用してデザイン検討した。試作デザインは３次元データ化し検証段階の最終設計を試みた。以下3次元データ化のための項目をまとめた。

① トレーニング効果を確認するために、市販のフィットネスバイクの部品、メカボックスをできるだけ使用する。
② フレームワーク、バッテリー搭載位置はスズキの電動車いす「セニアカー」から参考する。
③ デザインイメージはコンセプトB案のベーバーモック案をベースとする。
④ 1～3のデータ化から走行用詳細設計する。
⑤ フロントウォータービークやリアクーラービークのレンダリング作成。

2. 既存モデルの測定化

スズキ電動車いすのフレームの手測定及び測定器を使う方法から測定したものをベースとして作成（図-1）。測定データをもとにレイアウト案を作成（図-2）。

2-1. 測定データをもとにパッケージレイアウト案作成

3. ベーバーモックアップ案からデータ化へ

ベーバーモックアップのサイドビューの写真を下敷きにして、フィットネスバイクのメカボックス、ハンドル、シートのレイアウトを組合せ。3次元（3D）化の完了した名バー
4. データから詳細設計する

4-1. 電動車いすのフレームをベースに測定したフィットネスバイクを搭載しレイアウトする（図-4）。

4-2. 出来るだけオリジナル案を近づけるためにペーパーモックアップ案を取り込んだレイアウトを忠実にフォロー。但しバッテリー
レイアウトは変更（図-5）。

5. フロントクォータービュー、リヤクォータービュー レンダリング

5-1. ペーパーモックアップ案に近づけたフロントクォータービュー（図-6）。

5-2. ペーパーモックアップ案に近づけたリヤクォータービュー（図-7）。

6. まとめと今後の展開

3次元データをベースに走行可能な実走モデルを製作する予定。コンセプトで提案している案が実際にトレーニング効果が期待できるのか、検証を進める。（日頃使わない筋力を鍛える等で）健康を維持させるテーマになる事を期待している。

7. 謝辞

3次元データ化にあたりプロジェクトに参加してくれた岩原隆象君及び河岡セミメンバーグ各位に感謝致します。

8. 参考資料

●「カーデザイン」
日本デザイン学会誌
デザイン学研究特集号 第14巻1号 通巻53号2006

●「ライノ3Dモデリング」
カースタイリング特集172 1/2

●「自動車の基本計画とデザイン」 斎藤孟・中村
山海堂 2002年